PHYSICS COLLOQUIUM:
SiGe-based Quantum Electronic Devices

Date: 9/20/19
Time: 10:30 AM
Location: COB2 140

Tzu-Ming Lu
Quantum Materials Systems
Sandia National Laboratories

For more information, contact: Michael Scheibner
mscheibner@ucmerced.edu

Abstract
One of the building blocks of today’s digital technology is two-dimensional electrons in a Si metal-oxide-semiconductor field-effect transistor. These low-dimensional electrons may play an equally essential role in future computing paradigms. SiGe heterostructures hosting low-dimensional electrons/holes have recently emerged as an important material platform for future quantum electronics and spintronics. In this talk, I will first review the fabrication and device operation of SiGe heterostructure field-effect transistors with mobilities as high as $10^5 - 10^6$ cm2/Vs and then present some interesting quantum phenomena we observe in two-dimensional electron/hole systems in these high-mobility devices, including tunneling-limited non-equilibrium charge distributions, interlayer coherence between two coupled electron layers, and a gate-controlled quantum Hall ferromagnetic transition. Paths toward creating Majorana fermions in SiGe-based materials using the quantum Hall ferromagnetic transition and nanomagnet arrays will be discussed.

Acknowledgements
This work at Sandia National Laboratories has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy (DOE) and the Laboratory Directed Research and Development Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under Contract No.DE-NA-0003525. The views expressed in this work do not necessarily represent the views of the U.S. Department of Energy or the United States Government.